Elec 528 – Programming Exercise #3

Due: 2/17/2003

Create Phase 4 of the forwarding code, which will forward packets by looking the Ethernet Destination Address up in a hash table just as in Phase 3. However, in this Phase the Forwarding Table will not be preloaded, but must be learned as packets are received.

Each 32-byte entry is in the format shown below. Several fields are added to the table structure from Phase 3.

	
	Bit Positions

	Word
	31
	
	24
	23
	17
	16
	15
	13
	7
	6
	5
	4
	3
	2
	1
	0

	0
	Link Pointer
	0
	0
	0
	F
	I

	1
	Zeroes
	E
	MAC Address [47:32]

	2
	MAC Address [31:0]

	3
	Update Time (not used in this Assignment)

	4
	Zeroes
	POM
	0
	0
	Channel

	5
	Not Used in this Assignment

	6
	Pointer Base
	Fwd Ptr Offset
	Zeroes

	7
	Pointer Base
	Rev Ptr Offset
	Zeroes

	
	Bit Positions

The Table begins at address 0x10000 in Main (RDRAM) memory (#define DRAM_BASE). For each packet, the Ethernet Destination MAC address is looked up in the table. If there is an entry which contains the exact 48-bit MAC address in words 1 and 2, the packet is forwarded to the POM and Channel specified in word 4.

If there is not a matching entry, the packet is forwarded to POM 3, Channel 7 which emulates broadcasting the packet to all ports. The Local Memory location BROADCAST (0x1004) should be incremented.

If the Destination POM and Channel are the same as those on which the packet arrived, is should be sent to POM 3, Channel 6 which emulates dropping the packet. The Local Memory location DISCARD (0x1008) should be incremented.

The fields in the above table are used as follows:

Link Pointer – the main memory address of the next entry in this hash chain.

F(irst) – this bit is a one if this entry is the first one in its hash chain, and a zero otherwise.

I(nvalid Link) – this bit is a one if there are no further entries in this hash chain, and zero otherwise.

E(mpty) – this bit is a one if there is not a valid entry at this location, and zero otherwise.

MAC Address – the MAC Destination Address whose forwarding information is contained in this entry.

POM – the POM to which packets should be forwarded.

Channel – the Channel to which packets should be forwarded.

Forward Pointer Offset – the forward pointer in the doubly linked empty list.

Reverse Pointer Offset – the reverse pointer in the doubly linked empty list.

Pointer Base – the upper part of the table base address, so that the pointer entries point directly to the selected entry.

Since there are 256 entries, the MAC address must be hashed to eight bits. This is accomplished by XORing all six bytes of the address.

Initially, all 256 entries are held in an empty list. All pointers referenced below are offsets from the start of the table (0x10000) divided by 32, and thus are values 0 to 256. Location 0000 in SRAM (EMPTYHD) at address 0x15000000 (SRAMBASE) holds a pointer to the head of the Empty list (initially 0). In each location the Forward Pointer points to the next empty entry in the list. The last entry has the value 256. In each entry the Reverse Pointer points to the previous entry in the list, and the first entry has the value 256.

As each packet arrives, its Ethernet Source Address is looked up in the table. If the address is already present, nothing is changed. If the address is not in the table, it must be added to the table. Any new entries required are taken from the empty list.

The supplied TCL script loadl2blank.tcl initializes the table with all of the forward and reverse pointers, and initializes EMPTYHD. Main.tcl should be modified to execute this script instead of loadl2.tcl.

The PktGen utility has been enhanced so that it can generate a packet stream which includes one packet sourced from each address in Ethernet Table.txt. This is handy for debug, as it should leave the table with the same routing behavior as the preloaded table in Phase 2 (although the table may not be exactly the same – the learning algorithm may not process packets in the same order as the PktGen program does when it generates loadl2.tcl).

Multiple Context Considerations

The software should initially be developed while running only a single context, to simplify the debug. However, the software should eventually run with all contexts enabled, and there are two important considerations here.

The first consideration is that there should only be one process which is updating the table (learning) at any one time. Otherwise, the pointers in the linked list cannot be kept coherent.

The second consideration is that while the process which is updating the table is occurring, other processes in other contexts are continuing to forward packets using the table. Thus the updating context must never leave the table in an improper state, which requires some very careful analysis of the order of operations. Note that a DMA write operation is atomic – no memory reads or writes can occur in the middle of the DMA write.

